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Abstract

A generalized lattice Boltzmann model to simulate free-surface is constructed in both two and three dimensions. The

proposed model satisfies the interfacial boundary conditions accurately. A distinctive feature of the model is that the

collision processes is carried out only on the points occupied partially or fully by the fluid. To maintain a sharp in-

terfacial front, the method includes an anti-diffusion algorithm. The unknown distribution functions at the interfacial

region are constructed according to the first-order Chapman–Enskog analysis. The interfacial boundary conditions are

satisfied exactly by the coefficients in the Chapman–Enskog expansion. The distribution functions are naturally ex-

pressed in the local interfacial coordinates. The macroscopic quantities at the interface are extracted from the least-

square solutions of a locally linearized system obtained from the known distribution functions. The proposed method

does not require any geometric front construction and is robust for any interfacial topology. Simulation results of

realistic filling process are presented: rectangular cavity in two dimensions and Hammer box, Campbell box, Sheffield

box, and Motorblock in three dimensions. To enhance the stability at high Reynolds numbers, various upwind-type

schemes are developed. Free-slip and no-slip boundary conditions are also discussed.
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1. Introduction

Numerical modeling of moving interfaces between immiscible fluids is important for many industrial

applications. Solving the incompressible Navier–Stokes equations for two-phase flows is a difficult problem
since pressure and velocity derivatives may have discontinuities at the interfaces. In addition, a description

of the interface motion itself represents a complicated task. Existing methods to treat sharp interfacial

problems belong to two main categories: surface tracking, a Lagrangian method, and surface capturing,

an Eulerian one. The former approach explicitly treats the interface as a discontinuity and often the
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computational mesh directly tracks the interfaces. The latter one does not consider the exact interface

position in the discretization of the governing equations, but takes it into account during the interface

advection. These two methods can be combined together in some way when the grids are aligned with the

interface (e.g. [17,22,42,53,55,73]). Excellent overviews on various methods to treat interfaces are given by

Unverdi and Tryggvason [80], Sussman and Smereka [78], Rider and Kothe [67], Kothe [47], Rudman

[68,69], and Scardovelli and Zaleski [74].

Free-surface phenomena are ubiquitous in nature and in many industrial applications. Metal casting is

such an example. In this case, the density ratio between the melt metal and the air is of such a disparity that
the influence of the air on the melt metal can be ignored. Hence the problem of two-fluid flow with in-

terfaces reduces to the problem of one-fluid flow with free-boundaries. The formulation of the free-

boundary flow avoids the steep variations of physical quantities in the interfacial region. Several methods to

treat the free-surface problem have been developed. Among volume tracking methods, the most popular

one is a volume of fluid (VOF) method due to Hirt and Nicholls [34]. This method has been successfully

applied to simulate mold filling with regular grids [2,3,35,52] and has been extended to unstructured grids

(e.g. [17,59,60,64,79]). The free Lagrangian method of Fyfe et al. [15] and the grid free smoothed particle

hydrodynamics (SPH) methods [11,57] are representative examples of the extension of front tracking
methods to treat free-surface problems. In the former case, the computational grid itself is advected by the

Lagrangian equations. Whereas in the latter case, the interface is represented by a set of particle positions.

A front tracking technique has also been applied to strongly deformable geometries by Galaktionov et al.

[16]. A review on free-surface methods based on their applicability to the simulations of the mold filling

process is given by Kothe et al. [48].

Intended for solving the Navier–Stokes equation, the lattice Boltzmann (LB) models [33,38] do not

involve any global linear or nonlinear systems of equations. Their locality and linearity with respect to

computational mesh are absolutely essential for the applications of interfacial problems where the con-
ventional CFD solvers may fail to because of the stiffness and/or large dimensions of the problem. Fur-

thermore, the kinetic nature of the LB method provides the physical basis to deal with such complicated

physical phenomena as fluids segregation, diffusion, wetting, evaporation, etc., in a elegant manner. A

comparison of two-phase Lattice Boltzmann and VOF methods is available in [75]. An extensive literature

on the LB multi-phase and multi-component models can be found in [9,32,54,70,71].

One early LB model for immiscible fluids has been proposed by Gunstensen et al. [28]. In this immiscible

lattice Boltzmann (ILB) model, the collision and propagation rules are modified on interfacial grid points in

order to introduce the desirable interfacial behavior. The ILB model of Gunstensen and Rothman has been
originally designed to simulate flows of two immiscible fluids differentiated only by their colors. In addition

to the usual collision and advection steps, the ILB model has an additional ‘‘recoloring’’ step, which

preferentially redirects each fluid to the neighboring sites of the same color. This step is accomplished by

computing the gradient of the local mass fraction. The ‘‘recoloring’’ step must also preserve the conser-

vation laws. This ‘‘recoloring’’ scheme actually mimics a mechanism of segregation among the two com-

ponents marked by their colors. Owing to the explicit nature of the LB algorithms, the LB models has

difficulty to deal with fluids with large density ratio. In addition, the effective interface boundary conditions

implicitly imposed by the LB multi-phase methods have not been given sufficient attention in the past (cf.
[19]). The purpose of this paper is to propose a new volume tracking LB method to simulate hydrodynamics

with free-surfaces. It can be seen as a modified immiscible lattice Boltzmann model in which one species is

the fluid and the other one is considered as vacuum. The proposed LB method is applied to simulate the

process of filling a die cavity in metal casting [17,29,52], which is a crucial step in casting process since it

determines the quality of the final product.

The new LB method is different from the existing LB multi-phase and multi-component models because

the collision only occurs on the ‘‘active’’ cells which are fully or partially filled with fluid. The mass fraction

of a cell filled with fluid, which is between zero and one, is an additional variable used in the method.
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A ‘‘recoloring operator’’, similar to that in the ILB models, determines the redistribution of fluid mass

carried by each particle population. The macroscopic variables propagate together with the particle dis-

tribution functions in the advection step, according to the usual LB evolution equation. The unknown

particle distributions at the front of free-surfaces, which cannot be obtained by the usual LB method, are

constructed by using the first-order Chapman–Enskog expansion of the distribution functions. The free-

surface boundary conditions are directly met by matching the coefficients of the series solutions of the

distribution functions with the boundary conditions. Due to the rotational invariance, the first-order

Chapman–Enskog solutions of the distribution functions are naturally expressed in a local coordinates
which are normal and tangent to the free-surface. Therefore, the curvilinear interfacial boundaries can be

handled easily without reconstruction of mesh geometries.

The solutions for the distribution functions at free-surface are completely specified by the local hy-

drodynamic variables, i.e., the fluid density and velocity, in two dimensions. In three dimensions, deriva-

tives of velocity tangential to the free-surface are also needed to determine the solutions. The hydrodynamic

variables at the free-surface nodes are not determined, however, until all the distributions in a given cell are

obtained. The idea here is to derive the hydrodynamic information at free-surface locally, from the known

populations arriving at a given front node from the neighboring active nodes. In such a way, the resulting
solution for unknown distributions at front nodes is implicitly expressed in the form of a linearized function

of the known distributions. We obtain unknown quantities from the local least-square solution of a line-

arized system. This approach follows the basic philosophy of the local second-order boundary (LSOB)

method [20] where all first- and second-order momentum derivatives, necessary to impose Dirichlet

boundary conditions, are extracted from locally known populations. Therefore, the proposed method is

entirely based on a self-consistent kinetic theory, the Chapman–Enskog analysis being consistently applied

in the solid and interface boundary regions.

The lattice Boltzmann equation used here is based on the framework of the generalized lattice Boltz-
mann equation (GLBE) due to d�Humi�eeres [38]. In this approach, the collision operator is computed in the

space spanned by a basis in momentum space. The basis is presented in a unique form [21] and is suitable

for any DdQb model in d dimensions with q velocities [66]. In particular, we present the method in this

paper using D2Q9 and D3Q15 models as examples in two and three dimensions, respectively. The boundary

conditions at fluid–solid interfaces are realized by using local reflections of the distribution functions in the

spirit of the bounce-back scheme for the no-slip boundary condition. Because the effective accuracy of

bounce-back and specular reflections to model no-slip/free-slip boundary conditions (or their combination)

depends on the actual choice of all eigenvalues of the collision operator [18,39], we pay a special attention to
address this issue. We also pay special attention to the stability of the LB method [50]. Like any LB model,

the method develops instabilities at high Reynolds numbers, even if the free eigenvalues are chosen to

improve the stability (cf. [50]). This leads us to design schemes with better stability characteristics. Although

upwind approach is widely used in finite-difference/finite-elements schemes, it has not yet been adapted for

Lattice-Bolzmann methods. Indeed, one of the merits of the LB methods is that their numerical diffusion (at

least at second order) is already accounted in the diffusion coefficient. We show using linear convective-

diffusion problem as an example that higher-order terms in Chapman–Enskog expansion can introduce

negative numerical diffusion into the scheme. In order to compensate it, artificial numerical diffusion can be
added. In so far, various upwind LB schemes are constructed in [23], in analogy to one-dimensional upwind

[10], full-upwind, and streamline-type multi-dimensional upwind schemes [4]. In the present work, we use

the most crude but robust explicit upwind approach for free interface simulations at high Re numbers.

The paper is structured as follows. In Section 2, the LB framework and basic macroscopic relations are

given. In Section 3.1, first-order Chapman–Enskog expansion at interface is presented. In Section 3.2,

interface advection with recoloring step is discussed. Reconstruction of unknown populations at the in-

terface is described in Section 3.3. Brief outline of the numerical algorithm is given in Section 3.4. Boundary

conditions are discussed in Section 4. Overview of the algorithm is in Section 5. Explicit upwind scheme is
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discussed in Section 6. Section 7 considers the different aspects of the algorithm using 2D cavity filling and

benchmark 3D simulations in injected molding. Concluding remarks are in Section 8. Details to imple-

mentation of generalized LB equation are sketched in Appendix A.

2. Basic theory of lattice Boltzmann equation

2.1. Lattice Boltzmann equation

The lattice Boltzmann equation (LBE) is often written in the following form [77]:

eNiNiðr; tÞ ¼ Niðr; tÞ þ
Xbm
j¼0

Aij½Njðr; tÞ � N eq:
j ðr; tÞ� þ tHp ðC i � FÞ; ð1aÞ

Niðrþ C i; t þ 1Þ ¼ eNiNiðr; tÞ; i 2 f0; . . . ; bmg; ð1bÞ

where Ni is the population of the particle moving with D-dimensional velocity C i (C0 is a zero vector), A is

the collision matrix, F is an external force; weight coefficient tHp depends on the discrete velocity set C i, and
the index p is equal to c2i (c2i ¼ kC ik2). Equilibrium function Neq: is introduced by Eq. (10) and the coef-

ficients tHp are given in Table 1. They satisfy the following equations:

Xbm
i¼1

tHp C
2
ia ¼ 1 8a ¼ 1; . . . ;D; and tH0 ¼ 3�

X
p 6¼0

tHp : ð2Þ

There are two essential steps in Eq. (1a): collision (a) and propagation (b). Density q and momentum j are
defined as

qðr; tÞ ¼
Xbm
i¼0

Niðr; tÞ; ð3aÞ

jðr; tÞ ¼ J þ 1

2
F; J ¼

Xbm
i¼1

Niðr; tÞC i: ð3bÞ

The reason to modify the momentum in the presence of the forcing term is discussed in Section 4 and can

also be found in a number of references [5,18,39,49]. The mass and momentum conservation laws impose

the following conditions on the collision matrix A:

A � 1 ¼ A � Ca ¼ 0 8a ¼ 1; . . . ;D; ð4Þ

where 1 ¼ f1; . . . ; 1g and the ðbm þ 1Þ-vector Ca is built from the components of the ðbm þ 1Þ population
velocities in direction a.

Table 1

Equilibrium weights tHp and rHp

Model tH0 tH1 tH2 tH3 rH0 rH1 rH2 rH3

D2Q9 4=3 1=3 1=12 – ð3� 5c2s Þ=3 c2s=3 c2s=12 –

D3Q15 2=3 1=3 – 1=24 ð3� 7c2s Þ=3 1c2s=3 – c2s=24
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The collision matrix is fully determined by the choice of its non-zero eigenvalues and the corresponding

eigenvectors. To satisfy the linear stability conditions [33], the non-zero eigenvalues must lie in the interval

� � 2; 0½. Mass vector 1 and the vectors Ca are the eigenvectors associated with the zero eigenvalues—they

are the conserved modes in the model. Let fekg, k ¼ 0; . . . ; bm, denote the orthonormal basis in momentum

space, constructed as the polynomials of the vectors Ca. Let us assume that this basis represents the set of

the eigenvectors of the matrix A, associated with the eigenvalues fkkg. Following [38], we rewrite Eq. (1a) as

its projection on this basis

eNiNiðr; tÞ ¼ Niðr; tÞ þ
Xbm
k¼0

kkðN�Neq:; ekÞeki þ tHp ðC i;FÞ; ð5Þ

Niðrþ C i; t þ 1Þ ¼ eNiNiðr; tÞ; i 2 f0; . . . ; bmg: ð6Þ

Note that Eq. (5) replaces the explicit use of the collision matrix A. The eigenvalues can also be easily
adjusted during computations, if necessary, provided that they satisfy the stability constraints. When all

non-zero eigenvalues fkkg are set to be equal to �1=s, Eq. (5) reduces to the lattice BGK model [8,66]:

Niðrþ C i; t þ 1Þ ¼ Niðr; tÞ �
1

s
ðNi � N eq:

i Þ þ tHp ðC i;FÞ: ð7Þ

In the case of the lattice BGK equation (7), q and J are conserved provided that the equilibrium function

satisfies the following conditions:

ðN�Neq:; 1Þ ¼ 0; ðN�Neq:;CaÞ ¼ 0 8a ¼ 1; . . . ;D: ð8Þ

The labeling of the discrete velocity sets for D2Q9 and D3Q15 models in this paper, their basis vectors and

associated eigenvectors are given in Appendices A.1 and A.2, respectively.

2.2. Hydrodynamics equations

The solution for the population function Ni is usually obtained in a perturbative form of Chapman–
Enskog expansion [14] in the powers of small perturbation parameter � ¼ dx=L (L is the characteristic

length):

Niðr; tÞ ¼ N eq:
i ðr; tÞ þ �N ð1Þ

i ðr; tÞ þ �2N ð2Þ
i ðr; tÞ þOð�3Þ; i ¼ 0; . . . ; bm: ð9Þ

The equilibrium population N eq:
i ðr; tÞ can take a form (see [61,66])

N eq:
i ¼ rHp q þ tHp JaCia

h
þ q

uaub

2
ð3CiaCib � dabÞ

i
; u ¼ j

q
; J ¼ j � 1

2
F: ð10Þ

Parameter rHp is related with tp as

rHp ¼ tHp c
2
s when p 6¼ 0 and rH0 ¼ 1�

X
p 6¼0

rHp ; ð11Þ

where cs is the sound speed of the model, which is to be discussed later. The first-order correction to the

equilibrium, N ð1Þ
i , in standard coordinate system is given in details in Appendix A.5). One crucial ingredient

is that �Nð1Þ is isotropic (rotational invariant) and can be written in any orthogonal coordinate system

fx0; y0; z0g (z0 is omitted in two dimensions) as

�N ð1Þ
i ¼ 1

kw

oja0

ob0 Qia0b0 þ
1

ke
ðr � jÞEim

i ; fa0; b0g 2 fx0; y0; z0g; ð12Þ
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where

Qia0b0 ¼ tHp Cia0Cib0

�
� c2i
D

da0b0

�
and Eim

i ¼ tHp
c2i
D
� rHp : ð13Þ

Projection of the vectors Neq: of Eq. (10) and �Nð1Þ of Eq. (12) written in the standard coordinate system

on the basis vectors ek are given by formulas (A.4) and (A.10). The hydrodynamic equations for q and j
derived from the model are

otq þr � j ¼ 0; ð14aÞ

ot j þr � j � j

q

� �
¼ �c2srq þr � ðmrjÞ þ rðr � mn jÞ þ F; ð14bÞ

where the kinematic viscosity m and the bulk viscosity viscosity mn are related to two non-zero eigenvalues of

the collision matrix

m ¼ 1

3
s

�
� 1

2

�
; s � � 1

kw
; ð15aÞ

mn ¼ ½mð2� 3CÞ þ n�; n ¼ �ðC� c2s Þ
1

ke

�
þ 1

2

�
; ð15bÞ

and for D2Q9 and D3Q15 models, the coefficient C is given by

C ¼ Dþ 2

3D
: ð16Þ

For the athermal LBE models, the pressure P is given by the equation of state for an ideal gas,

P ¼ c2sq:

By introducing characteristic LB velocity U and assuming the density fluctuates about its average, q0, the

pressure can be rescaled in the following dimensionless form:

P ! ðP � P0Þ
q0U 2

; P0 � c2sq0: ð17Þ

Using the following scalings:

x! x=L; t ! tU=L; u ! u=U ; ð18Þ

we can write the hydrodynamic equations in the following dimensionless form:

M2otP þr � qu ¼ 0; ð19aÞ

otquþr � ðqu� uÞ ¼ �q0rP þ 1

Re
r � ðrðquÞÞ þ r mn

UL
r � ðquÞ

� �
þ q0

~11g
Fr

; ð19bÞ

where the Reynolds number Re, the Froude number Fr, and the Mach number M are defined as the fol-

lowing:

Re ¼ LU
m

; Fr ¼ U 2

FL
; M ¼ U

cs
: ð20Þ
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Accordingly, the density can also be written in terms of the dimensionless pressure

q ¼ q0ð1þM2P Þ: ð21Þ

If we choose to neglect the density fluctuation, which is second order in the Mach numberM , as indicated in

Eq. (21), we obtain the incompressible Navier–Stokes equations

r � u ¼ 0; ð22aÞ

otuþ u � ruþrP ¼ 1

Re
r2uþ

~11g
Fr

: ð22bÞ

In particular, Stokes equation can be obtained by omitting the nonlinear term in the equilibrium popu-

lation of Eq. (10). The sound speed is a free parameter in the equilibrium. The restriction c2s < C comes

from the condition n > 0 (see Eq. (15b)). Based on linear stability analysis, the choice of c2s ¼ 1=3 is the

optimal choice (see [50]) and it also corresponds to the LB models derived by another approaches (cf.
[31,43]). Small Mach number M means that U � cs.

2.3. Interface boundary conditions

In absence of surface tension between two fluids, one heavy and one light, the balance of momentum at
the interface according to the Navier–Stokes equation (14b) leads to the following equation at the interface:

½2mDj � n� Pn�S ¼ 0; Dj ¼ 1

2
ðoajb þ objaÞ: ð23Þ

If the density ratio among the two fluids is so disparate so that the dynamic viscosity of the light fluid (e.g.

gas) is negligible, the above equation (23) reduces to the following free interface conditions for the heavy

fluid (e.g. liquid):

P � 2m
ojn
on

¼ P0; ð24aÞ

ojs
on

þ ojn
os

¼ 0; s 2 fs1; s2g: ð24bÞ

Here jn and js ¼ fjs1 ; js2g are the normal and tangential momentum components of the viscous (heavy)

fluid; and P and P0 are the pressures of the heavy and the light fluids at the interface S, respectively.

3. Lattice Boltzmann model for free interface

The populations fNiðr; tÞg and the total mass of one-fluid qfðr; tÞ represent the main independent vari-

ables of the LB free-surface algorithm. In empty cells, qf ¼ 0; in the cells fully filled with fluid, mf ¼ q and

in partially filled cells, 0 < qf < q. The collision step is performed only in the ‘‘active’’ cells where qf 6¼ 0.

Similar to the VOF method, gravitation force is computed in proportion to current occupation of the cell:

F ¼ qf

q
ðq0gÞ: ð25Þ

The unknown populations at nodes adjacent to interface, which cannot be determined from the lattice

Boltzmann equation, are constructed by using Chapman–Enskog analysis up to the first order in the ex-

pansion in �.
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3.1. First-order expansion of Ni at interface

Here we write Nð1Þ given by the relation (12) in the interface coordinate system fx0; y0; z0g ¼ ðn; s1; s2Þ,
such that

�N ð1Þ
i ¼ 1

kw

ojs
on

�
þ ojn

os

�
Qins þ

1

kw

ojn
on

Qinn

�
þ ojs

os
Qiss

�
ð26Þ

þ r � j
ke

Eim
i ; s 2 fs1; s2g: ð27Þ

In the above equation, the non-diagonal components of the strain-rate tensor Dj are in the prefactor of Qns.

From the boundary condition (24b), the terms involving Qns should be set to zero at the interface. By

substitution of the divergence condition ojs=os ¼ r � j � ðojn=onÞ and Qiss ¼ �Qinn, we obtain the first-

order solution of Ni at the interface

Ni ¼ N eq:
i þ 2

kw

ojn
on

Qinn þr � j 1

ke
Eim
i

�
� 1

kw
Qinn

�
þOð�2Þ ð28Þ

in two dimensions. In three dimensions, we first write

ojs1
os1

Qis1s1 þ
ojs2
os2

Qis2s2 ¼
1

2

ojs1
os1

�
� ojs2

os2

�
ðQis1s1 � Qis2s2Þ þ

1

2

ojs1
os1

�
þ ojs2

os2

�
ðQis1s1 þ Qis2s2Þ: ð29Þ

Then using the divergence condition

ojs1
os1

þ ojs2
os2

¼ r � j � ojn
on

and the Qis1s1 þ Qis2s2 ¼ �Qinn, we obtain

Ni ¼ N eq:
i þ 3

2kw

ojn
on

Qinn þ
1

2kw

ojs1
os1

�
� ojs2

os2

�
ðQis1s1 � Qis2s2Þ þ

1

kw

ojs1
os2

�
þ ojs2

os1

�
Qis1s2

þr � j 1

ke
Eim
i

�
� 1

2kw
Qinn

�
þOð�2Þ ð30Þ

in three dimensions. Since r � j is of order OðM2Þ, it can be neglected in the above equations for incom-

pressible flows. Then using Eq. (24a) for ojn=on, Eqs. (28) and (30) become

Ni ¼ N eq:
i þ ðP � P0Þ

mkw
Qinn þOð�2Þ ð31Þ

in two-dimensions and

Ni ¼ N eq:
i þ 3ðP � P0Þ

4kwm
Qinn þ

1

2kw
ðQis1s1 � Qis2s2Þ

ojs1
os1

�
� ojs2

os2

�
þ 1

kw
Qis1s2

ojs1
os2

�
þ ojs2

os1

�
þOð�2Þ ð32Þ

in three dimensions.

The values of the known populations, which propagate from the neighboring active points to the front

nodes, are used to compute unknown macroscopic quantities (q, j, and the derivatives of j tangential to
interface) from the above equations by solving the linearized system by means of least-square fitting. We
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refer to local computing of unknown populations at front nodes as reconstruction step which is further

discussed in Section 3.3.

3.2. Recoloring step

In order to describe two-phase behavior, ILB models [28] include two type (color) populations: fRiðr; tÞg
and fBiðr; tÞg. Indeed, ILB operates only on their sums:

Pbm
i¼0 Riðr; tÞ and

Pbm
i¼0 Biðr; tÞ. We represent then

the ILB model in an equivalent form [24], by using only populations Niðr; tÞ and the total mass of the fluid

qfðr; tÞ (or mass fraction of one-fluid mf ¼ qfðr; tÞ=q) as independent variables. Here, Niðr; tÞ can be in-

terpreted as a sum of Riðr; tÞ and Biðr; tÞ. Local quantity of the another fluid is equal to qðr; tÞ � qfðr; tÞ.
Recoloring algorithm is employed to advect the quantity qf between the cells by keeping a sharp front. The

operation tends to send as much as possible fluid phase into direction of its bulk. For this purpose, one has
to find the solution, denoted RRðr; tÞ, which maximizes the post-collision color flux ~FF ½R� along the normal n
to the interface, with

~FF ðRÞ ¼
Xbm
i¼0

RiC i � n;
Xbm
i¼0

Ri ¼ qfðr; tÞ; 06Ri6 eNiNiðr; tÞ: ð33Þ

The solution is constrained by mass conservation. Note that, due to the above inequality, this solution

exists only when the post-collision populations are positive. Also it is on common unproven belief that this

also is required for stability. Below, we call ‘‘good’’ cells where the post-collision populations eNiNiðr; tÞ in Eq.

(5) are positive. The way we treat other cells is described in Section 3.3. In a simplest way, one can find the

solution to (33) as follows. Starting from the population whose velocity is the closest to the normal di-
rection (has maximal (C i � n) value), one goes down to those which has the minimal value and put Ri equal
to the maximal possible value (Ri6 eNiNi ). The procedure stops when no more color is available

(
Pbm

i¼0 Ri ¼ qf ). Additional efforts can be required to keep the symmetry of the solution. The new value

qfðr; t þ 1Þ is equal to the sum of all incoming fluid quantities RR
i ðr� C i; tÞ:

qfðr; t þ 1Þ ¼
Xbm
i¼0

RR
i ðr� C i; tÞ: ð34Þ

Since qfðr; t þ 1Þ can be updated immediately after recoloring steps in neighboring nodes, no additional

storage is needed for the solution RRðr; tÞ and this algorithm reduces the ILB memory requirement by
almost a factor two. We compute n similar as in VOF methods [51,67,83]

n � rmf ; ð35Þ

with the following central difference approximation

n ¼
Xbm
i¼1

siC imfðrþ C iÞ: ð36Þ

where

s ¼
1=4� f2; 2; 2; 2; 1; 1; 1; 1g for D2Q9;

1=8� f4; 4; 4; 4; 1; 1; 1; 1; 1; 1; 1; 1g for D3Q15:

(

Following [62,67], the method for normal estimation which reproduces a line (a plane) exactly regardless its

orientation with respect to fixed coordinate system is referred to as second-order method. With this cri-
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terion, approximation (36) which is done separately for each cell is only first-order accurate. This is con-

firmed by simple advection tests in Section 7.1. The possibility to have wetting/non-wetting condition at

solid boundary is controlled by the following assignment: qfðrsolidÞ ¼ qf � w, wP 0 in wetting case and

w6 0, otherwise. In computations below we assume mostly that interface is perpendicular to solid

boundary: ðn; nsÞ ¼ 0. Here and below, ðns; ss1; ss2Þ denote the normal and the tangential vector components

with respect to the solid wall. In order to model this condition with the relation (36), we define qfðrsolidÞ at
smooth enough walls as

qfðrþ C jÞ ¼ qfðrþ C iÞ if rþ C j ¼ rsolid;Cjns ¼ �Cins ; and Cjss ¼ Ciss : ð37Þ

Indeed, the condition (37) uses the same pairs of populations as a specular reflection (56) sketched in

Fig. 1.

3.3. Reconstruction step

According to our algorithm, cell is active if its qf value is positive. We define an interface cell as a cell

where the populations are separated into two sets: known and unknown. Known populations are those

which arrive from already active cells. Unknown populations are those which would arrive from the

non-active cells. We distinguish then two types of interface cells: interface (I) cells are those which have

been already active at the previous time step; new interface (N) cells are those which have not been

active at the previous time step. Let us denote as Iþ (I�) the set of indices of locally known (unknown)
populations Nþ

i (N�
i , respectively). The numbers sþ and s� of known and unknown populations are

related by

sþ þ s� ¼ bm þ 1: ð38Þ

Fig. 1. Left to right: non-local specular reflection, local specular reflexion, 2D corner. In last case, in 2D: N1 ¼ ~NN3, N2 ¼ ~NN4,

N5 ¼ ð1=2Þð ~NN6 þ ~NN8Þ, N6 ¼ ð1=2Þð ~NN6 þ ~NN7Þ, N8 ¼ ð1=2Þð ~NN8 þ ~NN7Þ.
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One can represent the population expansions (31) and (32) as

N ¼ BX þ b;X ¼
fq; jx; jyg; 2D;

fq; jx; jy ; jz;
ojs1
os1

� ojs2
os2

;
ojs1
os2

þ ojs2
os1

g; 3D:

(
ð39Þ

Vector X contains nv ¼ 3 unknown macroscopic quantities in 2D and nv ¼ 6 unknowns in 3D. When we do

not neglect the term r � j in Eqs. (28) and (30), we include it into the list of variables X . The elements of the

matrix B depend upon the linearization of the equilibrium (10).

Linearization with respect to momentum approximates the nonlinear terms quaub in (10) as

quaub ¼ jauHb : ð40Þ

Approximate velocity (uHb ) and density (qH) values are discussed below. Let us introduce Qia

Qia ¼
X

b

uHb
2
ð3CiaCib � dabÞ 8a ¼ 1; . . . ;D: ð41Þ

Then for the D2Q9 model the coefficients in (39) are

Bi;1 ¼ rHp þ c2s
m

1

kw
Qinn; ð42aÞ

Bi;2 ¼ tHp ðCix þ QixÞ; ð42bÞ

Bi;3 ¼ tHp ðCiy þ QiyÞ; ð42cÞ

bi ¼ � 1

m
1

kw
P0Qinn �

1

2
tHp

qf

qH
q0ðC i; gÞ ð42dÞ

and for the D3Q15 model:

Bi;1 ¼ rHp þ 3c2s
4m

1

kw
Qinn; ð43aÞ

Bi;2 ¼ tHp ðCix þ QixÞ; ð43bÞ

Bi;3 ¼ tHp ðCiy þ QiyÞ; ð43cÞ

Bi;4 ¼ tHp ðCiz þ QizÞ; ð43dÞ

Bi;5 ¼ Qis1s1 � Qis2s2 ; ð43eÞ

Bi;6 ¼ Qis1s2 ; ð43fÞ

bi ¼ � 3

4m
1

kw
P0Qinn �

1

2
tHp

qf

qH
q0ðC i; gÞ: ð43gÞ
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Approximation to force-term (25) appears in b since we consider here j and not J as an unknown

variable in X (cf. (10)). The linearized equations to find X correspond to Sþ known populations

Nþ
i

BijXj ¼ ri; ri ¼ Nþ
i � bi; i 2 Iþ: ð44Þ

One can introduce further constraints on X . We considerably improve stability and accuracy when the
solution is required to fulfill approximate density definition (3a) in a form:

q �
X
i2I�

N�
i ¼

X
i2Iþ

Nþ
i : ð45Þ

Substitution of the population expansion (39) into (45) for N�
i yields an additional equation:X

j

Bq;jXj ¼ rq; ð46aÞ

Bq;1 ¼ 1�
X
i2I�

Bi;1; ð46bÞ

Bq;k ¼ �
X
i2I�

Bi;k; k ¼ 1; . . . ; nv ð46cÞ

rq ¼
X
i2Iþ

Nþ
i þ

X
i2I�

bi: ð46dÞ

This completes assembling of the matrix B and the vector b. Different from the relation (40) linearizations
of the equilibrium can be proposed.

Linearization with respect to density, in particular, treats the nonlinear term as

quaub ¼ quHa u
H

b : ð47Þ

In case (47), one can take J itself as a component in X . This avoids approximation of the density (cf. (42a)–

(43a)). In 2D, for example, relations (42a) are modified as follows:

Bi;1 ¼ rHp þ c2s
m

1

kw
Qinn þ tHp

X
ab

uHa u
H

b

2
ð3CiaCib � dabÞ; ð48aÞ

Bi;2 ¼ tHp Cix; ð48bÞ

Bi;3 ¼ tHp Ciy ; ð48cÞ

bi ¼ � 1

m
1

kw
P0Qinn; ð48dÞ

X ¼ fq; Jx; Jyg: ð48eÞ
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Linearized system of equations (44), (45) contains m ¼ sþ þ 1 equations: 26m6 bm þ 1. The number of

variables nv is equal to the number of components of the vector X . When nv6m, we solve the linear system
by using fast least-square method with permutations. Single Value Decomposition Method [65] can be used

as well but it has been found to be much slower for linear systems used here. If the linear solver detects that

the system is singular, or when nv > m, we use extrapolations for unknown populations from neighbor

‘‘good’’ active points (as defined in Section 3.2). Similar procedure is employed when appear negative

populations after the reconstruction or after collision. We show below that the relative part of ‘‘bad’’

situations is very small in stable calculations. When combinations of tangential derivatives in 3D are not
included to X (39), one does not need then to construct tangential vectors s1 and s2. Moreover, this reduces

the number of singular cases since the number of unknowns decreases from nv ¼ 6 to nv ¼ 4. No important

impact on the solution was detected because of this approximation.

Approximate values qH and uH are obtained as follows. In already active I-cells, the previous time step

solution is used. In new interface N-cells, an extrapolation from the active cells lying as close as possible

along the normal n is employed. At least one neighbor active node always exists by the definition of N-cell,

otherwise it would not be activated. Since the collision, and hence update of q and u, is done first in B- and

I-cells, reconstruction step in N-cells can use current solutions in neighbor ‘‘good’’ nodes for extrapola-
tions (see the steps 6–8 of the algorithm). Additionally, other successful N-cells can be used for extrap-

olations.

The summary of the local reconstruction procedure reads:

1. Compute n. When necessary, compute s1 and s2.

2. Extrapolate (in time or space) velocity and density values.

3. Compute B and b.
4. Solve linearized system.

5. Compute unknown populations in a form (39).
One can then iterate the steps 3–5 by using velocity/density values obtained at a previous sub-iteration

for approximations. We detect, however, only weak influence of this procedure on the accuracy/stability.

3.4. Brief outline of the numerical algorithm

We initialize first qf in all liquid cells at t ¼ 0. The populations are then initialized to their equilibrium

values and first collision step is performed in active cells where qf > 0. We refer to active cells as AðtÞ-cells
below. Subsequent steps at time t, t ¼ 0; . . . ; are

1. Compute qfðr; t þ 1Þ in all cells by recoloring technique.

2. Divide all cells into active/non-active cells: (r; t þ 1Þ 2 Aðt þ 1Þ if qfðr; t þ 1Þ > 0; otherwise it is non-

active.

3. Propagate populations from AðtÞ into Aðt þ 1Þ cells.
4. Classify known/unknown populations in Aðt þ 1Þ cells: Niðr; t þ 1Þ is marked as known population if

ðr� C i; tÞ 2 AðtÞ. Otherwise it is marked as unknown population.

5. Divide Aðt þ 1Þ cells into B/I/N-cells:

• ðr; t þ 1Þ is marked as B(bulk)-cell if it has obtained only known populations.

• ðr; t þ 1Þ is marked as I(interface)-cell if it has obtained at least one unknown population and if

ðr; tÞ 2 AðtÞ.
• ðr; t þ 1Þ is marked as N(new interface)-cell if ðr; tÞ 62 AðtÞ.

6. Perform collision in B-cells.
7. Perform reconstruction and collision in I-cells.

8. Perform reconstruction and collision in N-cells.

9. t ¼ t þ 1; Go to 1.

This completes the short description of the LB free interface algorithm.
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4. Boundary conditions

4.1. No-slip boundary conditions

While applying the method in very complex geometries, we currently accept its ‘‘step-wise’’ cell-

centered discretization on the regular rectangular grids. We apply at boundary nodes the bounce-back

rule (b.b.) where the populations leaving the fluid return to the node of departure with the opposite

velocity:

N�iðr; t þ 1Þ ¼ ~NNiðr; tÞ if rþ C i 2 solid; C�i ¼ �C i: ð49Þ

Let us first consider the condition (49) at order Oð�0Þ, i.e., when

N eq:
�i ðr; tÞ ¼ N eq:

i ðr; tÞ ð50Þ

and, therefore, momentum projection on the link C i should vanish at r

ðj � C iÞðr; tÞ ¼ 0: ð51Þ

Substitution of the first-order expansion (12) written along a link C i into the b.b condition (49) holds

½ðj � C iÞ þ D �rðj � C iÞC i�ðr; tÞ ¼ 0þOð�2Þ þOðM2Þ þ � � � ; D ¼ 1

2
: ð52Þ

Closure relation (52) locates the walls in the middle between the current node r and the neighbor node

rþ C i. So, at order Oð�1Þ:

ðj � C iÞðrþ
1

2
C i; tÞ ¼ 0: ð53Þ

Condition (53) is exact for linear flow only, similar as its generalizations [13,58], which annihilate

ðj � C iÞ at a given distance DC i between r and rþ C i. When second-order Chapman–Enskog expansion is
substituted into b.b. condition, i.e., the second-order momentum derivatives are taken into account, the

analysis [18,21,39] shows that effective wall location depends on the choice of the whole set of the ei-

genvalues. So far, it depends on the kinematic and bulk viscosities values. It depends also upon wall

inclination with respect to the lattice. Modification of momentum definition by ð1=2ÞF [cf. Eqs. (3b) and

(10)] enables us to analyze obtained closure relations independently on the force term in Eq. (5) since b.b

holds

� 1

2
tHp ðC i;FÞ þ

z}|{force

tHp ðC i;FÞ ¼
1

2
tHp ðC i;FÞ ¼ � 1

2
tHp ðC�i;FÞ: ð54Þ

In general flows, effective precision of the b.b. rule is something between first and second order. It is

only first-order accurate, however, in inclined channels as shown in [20]. In order to improve the
precision of the b.b. boundary conditions, we apply magic solution for eigenvalues (A.13)–(A.15a). This

solution fulfills exactly closure relation (53) for Poiseuille flow for channels parallel to x, y or z lattice

axis. Relation (A.13) represents a particular case of the solution [39], since here all eigenvalues asso-

ciated with the even (odd) order polynomial basis vectors are set equal between them. The solution

(A.13) provides viscosity-independent wall location for Stokes flow in any geometry. When kw ! �2,

the first-order collision (A.16) is not as precise as the magic collision for b.b rule but is still accept-

able, since in the limit m ! 0, the influence of second-order terms on the effective wall position goes to

zero.
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4.2. Free-slip boundary condition

Free-slip boundary condition has not been so intensively studied as the bounce-back conditionfor the LB

models. Following Maxwell [6,56], specular reflections are used in the LB methods to model it: when the

population arrives on the solid from a boundary node, it reflects into the node symmetric with the respect to

the normal to the wall (see Fig. 1). Using first-order Chapman–Enskog expansion [7,12,27], one can show

that specular reflection at a solid wall provides free-slip boundary condition

jns ¼ 0;
ojss
ons

þ ojns
oss

¼ 0; ss ¼ fss1; ss2g: ð55Þ

Formally, condition (55) holds up to Oð�2Þ only when the flow is invariant along a wall. In general then,

local specular reflection (see Fig. 1) has approximately the same accuracy. We implement it in a form

N�iðr; t þ 1Þ ¼ ~NNjðr; tÞ if frþ C i; rþ C jg 2 solid and C�ins ¼ �Cjns ; C�iss ¼ Cjss : ð56Þ

Relations (56) mean that all populations return into the node of departure. Unlike to bounce-back, force

addition in (5) is not consistent with the condition (56) when F is parallel to the wall. To improve this, one

should either omit the corresponding force addition to leaving populations ~NNjðr; tÞ, or to implement

specular reflection in its classical non-local form, when the populations are reflected into the neighboring

nodes. In geometries more complicated than the point near a solid wall, the solution for an unknown
population should involve more than one post-collision population. For instance, in the case of ‘‘2D’’

corner (see Fig. 1), we compute unknown ‘‘corner’’ populations, both in 2D and in 3D, as an arithmetical

mean of specular reflections with respect to both walls forming the angle. This provides free-slip condition

(55) approximately on the both sides. Useful test of free-slip boundary conditions is a uniform Stokes flow

in an infinite (periodic) channel. This solution is maintained exactly by the relations (56) in 2D case and by

using mentioned above reflections in corners, in 3D case. Similar, free interface algorithm should provide

exact solution with density and velocity equal to those at the inlet when constant flux comes into a channel.

Linear combination of free-slip/no-slip boundary conditions with some factor p=ð1� pÞ enables us to
model intermediate friction behavior.

4.3. Inlet boundary condition

Inlet boundary condition is not trivial even in the case of a constant incompressible flux jin ¼ q0U
in

entering the domain. Indeed, the density qinðr; tÞ at the inlet is not equal to its initial value q0 because of the

pressure gradients. So far, qinðr; tÞ is a priori unknown. Moreover, since mass flux j performs the qf -

transport for the recoloring algorithm, j should be proportional to the effective qin value and, therefore,

cannot be set equal to jin. In order to compute qin, we use the same idea as for the reconstruction step: all

populations are expressed as a first-order Chapman–Enskog expansion where the velocity is set equal to its

inlet value. Known populations, arriving at the inlet from the bulk, are used to derive the unknown

quantities. In particular, when the velocity derivatives at inlet are negligible (e.g. constant profile) and
continuity condition (19a) is assumed, �N ð1Þ

i (12) written in non-inclined coordinate system becomes

becomes

�N ð1Þ
i ¼ 1

kw

oq
ob
U in

a Qiab; i 2 f0; . . . ; bmg: ð57Þ

Assuming an approximately hydrostatic (linear) pressure distribution at inlet c2soq=oz � q0g, the pop-

ulations take the form

Ni ¼ qBi þ bi; ð58Þ
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where

Bi ¼ rHp þ tHp U in
a Cia

"
þ
U in

a U
in
b

2
ð3CiaCib � dabÞ

#
; bi ¼

q0g
c2s

1

kw
U in

a Qiaz �
1

2
q0gCiz:

Computing a sum of known populations
P

i2Iþ N
þ
i , we write then Eq. (45) for density

q ¼
P

i2Iþ N
þ
i þ

P
i2I� bi

1�
P

i2I� Bi
: ð59Þ

When q is computed, incoming populations are imposed in the form (58). In case of not uniform inlet

profile, the same approach has to include the first- and, if necessary, second-order momentum derivatives

into Chapman–Enskog expansion for inlet populations.

5. Overview of the algorithm

We apply our method to simulate filling processes. The scaling procedure is based on the equality of the

Reynolds number Re and Froude number Fr to those of the experiment (see (20)). The magnitude of the

inlet LB velocity Ulb, Ulb ¼ kU ink, determines the scaling factor between the LB and the physical velocities.

Characteristic length L is set equal to some inlet distance. Consider some regular grid which covers the

computational domain. Let the number of its liquid cells be equal to V and their number at inlet be Sin. The
number of LB time steps to fill the box is T lb ¼ V =ðSinUlbÞ. Since the computational time is the inverse of

proportional to Ulb, its value must be as high as possible. On the other side, the conditions Ulb < 1 and

Ulb < cs should be met. Moreover, M2 ¼ Ulb2=c2s should be small enough to avoid high compressibility

error. For instance, in case when nearly hydrostatic regime rP 0 � Fr�1 is attained in a box of a height H ,

the density difference q � q0 between the top and the bottom is about ½q0=c
2
s �glbH . When the physical ve-

locity increases in l times but the same inlet velocity is used in different LB simulations, glb and density

variation decreases as l2. So far, simulations corresponding to high physical velocities are easier for the

method from the point of view of the compressibility effects caused by the gravitation.
In simulations below, we mostly use Ulb

6 0:1 and c2s ¼ 1=3, i.e., M2
6 0:03 at inlet, at least. According to

von Neumann analysis of the linearized stability [50,76,82], the minimal stable viscosity value mmin increases

with Ulb. When Ulb ¼ 0:1, the LB method without free interface approaches its stability boundary

somewhere at smin � 0:5078 in 322 and 642 periodic boxes. These data correspond to first-order collision

(A.16) according to our stability analysis. In case of simulations with free interface and Ulb � 0:1, we detect
a loss of stability at approximately this range of s values, i.e., at moderate Reynolds numbers

(Re � 200–500 for typical inlet length Llb � 10l:u). The development of instabilities manifests itself, for

example, in appearance of a large number of negative populations after the reconstruction. In fact, local
velocities overhead the inlet velocity several times in real-life simulations. The nonlinearity of the flow (see

[82]) and the presence of free boundary can shift the stability bounds to greater viscosity values as well.

When the grid is refined by a factor p, i.e., V ! p3V , S ! p2S, and Ulb is reduced by a factor k, kP 1, T lb

increases as p � k times and the total computational efforts increase accordingly by a factor about

p3 � p � k. Since Mach number decreases as k2, one should not expect decreasing of the compressibility

effects when k ¼ 1 even if the grid is refined. The stability should improve, however, since mlb increases by a

factor p=k. In reality, mlb should take so small values for high Reynolds number simulations that it appears

to be un-practical to improve the stability only with a help of the refining procedure. In order to analyze the
problem, two approaches have been investigated. The first one is to study different reconstruction strate-

gies, including higher-order extrapolations, iteratively improved linearizations, explicit/implicit time ap-

proximations, etc. In spite of some improvement, no important gain in stability has been obtained unless
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some numerical diffusion is introduced into the scheme. This represents our second approach to stabilize

the LB method as discussed in the next section.

6. Upwind approaches

So far three possibilities have been explored in [23]. As a first (explicit upwind) approach we add nu-

merical diffusion explicitly as shown below. In the next approach, in order to reduce crosswind diffusion of
such an explicit upwind scheme in multi-dimensions, we represent the equilibrium function of the LB

equation in such a form that derived macroscopic equations may include different corrections to diffusion

tensor. In this way, we introduce LB analogs of full upwind scheme and different streamline type upwind

schemes. As a last possibility to damp the small-scale fluctuations, the simplest turbulent (Smagorinsky)

model was considered similar to [37]: m ! m þ mT; mT ¼ C2
s jjDjj. The intrinsic locality of the LB method is

maintained in almost all new schemes since all components of strain-rate tensor Dj ¼ qD are derived

from non-equilibrium part of the population solution. When a spectrum of global evolution operator is

improved for the first and third approaches, the LB method becomes robust and stable. Explicit upwind
scheme has been found to be the most robust for free interface simulations. Robustness means here that

very different realistic problems can be modeled using nearly equal upwind parameters without loss of

stability.

The idea of Pe-dependent numerical diffusion borrowed from the framework of the conventional ap-

proaches in case of 1D convection–diffusion problem (see [10]):

m
o2/

oy 02
� UH

o/
oy0

¼ 0; U > 0; 06 y0 ¼ y=H 6 1; /ð0Þ ¼ 1; /ð1Þ ¼ 0: ð60Þ

The exact solution is

/ðy0Þ ¼ eky
0 � ek

1� ek
; k ¼ UH

m
: ð61Þ

Exact LBE solution to Eq. (60) is discussed in [30]

/ðy0 ¼ jhÞ ¼ vj � vn

1� vn
; v ¼ 1þ Pe

1� Pe
; Pe ¼ Uh

2m
; h ¼ H

n
; j ¼ 0; . . . ; n: ð62Þ

This solution will coincide with the solution (61) if

vn ¼ expk; i:e PeðmeffÞ ¼ expk=n�1

expk=nþ1
; i:e meff ¼ Uh

2

expk=nþ1

expk=n�1
: ð63Þ

Relation (63) means that the effective LB viscosity should be changed (m ! meff ) to obtain exact solution for

linear convection–diffusion problem. In other words, high-order terms in this flow population solution add

the negative diffusion to the viscosity coefficient m, computed from the first-order Chapman–Enskog ex-

pansion. In order to compensate it, one can introduce artificial numerical diffusion mnum:

mnum ¼ meff � m ¼ m � Pe
exp2Peþ1

exp2Pe�1

�
� 1

Pe

�
¼ m � Pe� f ðPeÞ; f ðPeÞ ¼ cothðPeÞ � 1

Pe
; Pe ¼ k

2n
:

ð64Þ

Relation (63) means that when exactly the same quantity of the numerical diffusion (‘‘optimal rule’’) as
for finite-difference methods [10] is added, LB solution to the problem (60) becomes exact.
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With the ‘‘explicit upwind approach’’, we adjust locally kw so that m becomes equal to meff :

meff ¼ m þ mnum; mnum ¼ m � F ðPeÞ; F ðPeÞ ¼ C � Pe� f ðPeÞ; Pe ¼ kukh
2m

: ð65Þ

Here, the local Peclet number Pe (or grid Reynolds number) controls the quantity of the numerical diffusion;

kuk is magnitude of local velocity; space step h is equal to 1 l.u; C is some free parameter. In order to reduce

mnum at least at small and intermediate Pe numbers, we introduce modified critical approximation (cf. [4]):

f ðPeÞ ¼ 0; Pe < Pecrit:; and f ðPeÞ ¼ 1

�
� Pecrit:

Pe

�
; Pe > Pecrit:: ð66Þ

We assume here that an estimation obtained from the stability analysis for maximal stable Peclet number

Pemax enables us to fix Pecrit: value, Pecrit: 6 Pemax. Let mcrit:ðkukÞ corresponds locally to Pecrit:
mcrit: ¼ kukh=2Pecrit. Then we can rewrite relations (65) and (66) as

mnumðmÞ ¼ 0; meffðmÞ ¼ m if m > mcrit:;

mnumðmÞ ¼ ðmcrit: � mÞ½C � Pecrit:�;
meffðmÞ ¼ ½C � Pecrit:�mcrit: þ ½1� C � Pecrit:�m if m < mcrit::

ð67Þ

Relations (67) mean that the numerical diffusion manifests itself only when the kinematic viscosity is less

than critical viscosity value at a given velocity. Effective viscosity (67) is represented as a linear combination

of mcrit: and m. Its magnitude depends on a product of two values: Pecrit: and C. When C � Pecrit: ¼ 1, meff takes
its minimal value mcrit:ðmÞ. We study results obtained with a help of explicit upwind scheme in case of one-
phase examples (1D convection–diffusion, driven cavity) and benchmark free interface simulations (see

[23]). Based on these results, we conjecture that the choice Pecrit: ¼ D and C ¼ 1=D is close to limit of the

admissible numerical diffusion on fine enough grids. In this way, meff approaches critical approximation [4]

to solution [10] in 1D case. Note that in case Ulb ¼ 0:1, choice Pecrit: ¼ 3 corresponds to s ¼ 0:55 � smin.

The assumption that the LB stability limits can be estimated in terms of Pe number is currently under study.

7. Numerical results

7.1. Advection tests

As a simple advection test of the recoloring algorithm, we advance a bubble with a given constant ve-
locity U by using free interface LB method for grids with different resolution. Fig. 2 demonstrates that the

bubble shape is maintained. Initially, the active points are those lying inside the bubble (qf ¼ q0). In all

active points, the population solution stays equal to Stokes equilibrium N eq:
i ðq0;UÞ after each propagation

step. Consequently, the density q and velocity u stay equal to their initial values q0 and U . For the con-

vergence study, regular grids ð2nÞD, n � n0 are used. Space step is set equal to 1 l.u. for every grid. The initial

radius of bubble is 7� 2ðn�n0Þ l.u., n0 ¼ 5 and its initial position is r0 ¼ ð2n�1ÞD. The position of bubble

center RðtÞ is approximated as qf=q-weighted sum of the active cells centers. The error err in bubble center

position is computed as the arithmetical mean of its coordinate values

err ¼ 2n0�n

D

X
a¼1;...;D

X
t

kðRaðtÞ � Re:
a ðtÞÞk; Re:ðtÞ ¼ R0 þ ut: ð68Þ

Error is measured in discrete time moments t ¼ f10� k � 2ðn�n0Þg, k ¼ 1; . . . ; 7. The norm of the dif-

ference relðnÞ ¼ ðerrðnÞ=errðnþ 1ÞÞ1=2 is computed for each pair of the consequently refined grids. Linear
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(quadratic) convergence should correspond to relðnÞ ¼
ffiffiffi
2

p
(relðnÞ ¼ 2), respectively. Results obtained in

case of different advection velocities and D3Q15 model are found in Tables 2 and 3. Convergence rates

between first and second order are agree with the prediction of Section 3.2. As it could be expected, the

error is anisotropic. Similar results are obtained for other U values and for D2Q9 model.

Although analysis of the ILB solutions for simple interfaces has been done (see [1,19]), recoloring step

deserves to be studied more attentively. In order to demonstrate how the recoloring step can be analyzed

independently from the whole LB algorithm, translation test is included as an example. More complicated

Table 2

Error norm in 3D for bubble advection in case (36)

Velocity U 323 643 1283

U ¼ ð0:1; 0; 0Þ 0.2464 0.0603 0.0168

U ¼ ð0:1; 0:1; 0:1Þ 0.2011 0.0696 0.0321

U ¼ ð0:05; 0:1; 0Þ 0.2489 0.1031 0.0301

U ¼ ð0:05; 0:1; 0:05Þ 0.2727 0.0923 0.0271

Fig. 2. Advection of 2D bubble with U ¼ ð0:05; 0:1Þ. Top to bottom: 322, 642, and 1282 grids.
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advection tests defined by Rider and Kothe [67] are in study [46]. We limit then ourselves by the translation

test because of the following reasons.

The benchmark simulations used for conventional interface tracking schemes are more difficult to handle

correctly for the recoloring step. The reason for this is that recoloring needs to set population distribution

functions. In case of the translation test, the equilibrium function represents exact population solution. For

more complicated tests, distribution series requires not only local pressure and velocity values at given time

but also their space derivatives. Depending on the truncation order, approximated populations may in-

troduce an additional error at the advection stage. Alternatively, one may model the velocity/pressure
benchmark solution with the LB method itself. In this case, the recoloring step is based on the LB pop-

ulation solution similar as in the present paper. One should have in mind, however, that the obtained

velocity solution may differ from the benchmark solution due to the numerical error in the LB method

itself. When necessary, one should then separate the advection error from the velocity error. Theoretical

analysis of the recoloring step could reveal at which order the Chapman–Enskog expansion of the popu-

lation distribution can be truncated in a consistent manner. Moreover, it could help to understand how the

recoloring could be efficiently coupled with the other interface solvers.

7.2. Filling in 2D cavity

We consider first filling simulations in 2D cavity with expansion 1:5. Inlet section is 2 cm� 7:8 cm, the

cavity is 10 cm� 20 cm; inlet velocity is equal to 100 cm/s, filling time T is 1.08 s. Gravitation is absent:
g ¼ 0. Density of fluid qexp is 1 g=cm

3
. We vary Reynolds number Re with viscosity. No special efforts to

maintain the symmetry is done. We show the obtained results in Figs. 3–6 for Re ¼ 0:2, 2, 50, 500, re-
spectively. In whole, filling patterns are in agreement with the theoretical and the numerical analysis [2]. At

Re ¼ 0:2, the ‘‘mound filling’’ is observed. At Re ¼ 2, the filling behavior is changed and ‘‘disk pattern’’

Table 3

Convergence results for data in Table 2

Velocity U 32–64 64–128

U ¼ ð0:1; 0; 0Þ 2.0216 1.8953

U ¼ ð0:1; 0:1; 0:1Þ 1.7001 1.4733

U ¼ ð0:05; 0:1; 0Þ 1.5537 1.8509

U ¼ ð0:05; 0:1; 0:05Þ 1.7186 1.8443

Fig. 3. LB simulation of filling of a 2D cavity at Re ¼ 0:2. The figure shows the time-evolution of the velocity magnitude distribution in

the cavity (left to right then top to bottom, t ¼ 0:11, 0.27, 0.32, 0.43, 0.54, 0.59, 0.75, 0.92, and 1.02 s). Physical parameters are:

U ¼ 100 cm/s, mexp ¼ 1:0 cm2=s, T ¼ 1:08 s, and Lexp ¼ 2 cm. The number of cells is 86,240. The parameters used in the simulation are:

Ulb ¼ 0:00625, mlb ¼ 1:25, s ¼ 4:25, Llb ¼ 40, and T lb ¼ 344; 960. No-slip boundary conditions are applied at walls and the magic

collision of Eq. (A.13) is also used. Colors: light gray in inlet section (214–232 cm/s), dark gray in inlet section (125–143 cm/s), and gray

(<71 cm/s).
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develops. Relatively small LB velocities are used in both cases in order to decrease LB viscosities and,

therefore, to improve an accuracy of boundary conditions.

At intermediate and high Re, when inertia dominates, filling patterns change drastically and so-called

‘‘shell’’ type filling is obtained at Re ¼ 50 and Re ¼ 500. At Re ¼ 50, viscous boundary layers are rather
thick (see Fig. 5). At Re ¼ 500, the boundary patterns are much thinner and they develop almost parallel to

adjacent wall, in according to the analysis of inviscid flow [2]. Similar solution are obtained at Re > 500,

Fig. 4. LB simulation of filling of a 2D cavity at Re ¼ 2. The viscosity is mexp ¼ 0:1 cm2=s (s ¼ 0:875). Other parameters and conditions

remain the same as in Fig. 3. Colors: light gray (157–171 cm/s), dark gray (100–114 cm/s), and gray (<43 cm/s).

Fig. 5. LB simulation of filling of a 2D cavity at Re ¼ 50. The viscosity is mexp ¼ 0:04 cm2=s (s ¼ 0:74), Ulb ¼ 0:1, and T lb ¼ 21; 560.

First-order collision (A.16) is used. Other parameters and conditions remain the same as in Fig. 4. Colors: light gray (196–232 cm/s),

dark gray (125–143 cm/s), and gray (<71 cm/s).

Fig. 6. LB simulation of filling of a 2D cavity at Re ¼ 500. The viscosity is mexp ¼ 0:004 cm2=s (s ¼ 0:524). Friction factor p is set to 1/2.

Other parameters and conditions remain the same as in Fig. 5. Colors: light gray (196–232 cm/s), dark gray (125–143 cm/s), and gray

(<71 cm/s).
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when we use explicit upwind scheme (67) with C ¼ 1 and Pecrit: ¼ 1. When this scheme is applied in case

Re ¼ 50, no influence on the solution is detected since the actual Pe-numbers are less than Pecrit:. We
conclude then that for chosen parameters of the upwind scheme, the quantity of the numerical diffusion is

acceptable.

The convergence behavior of the algorithm with respect to the space resolution is checked by considering

three consequently refined grids. In so far, the solution above corresponds to finest grid of the sequence.

The results are displayed in Fig. 7 for pressure solution. At given Re number, equal inlet LB velocities are

used for simulations at every grid. Then the CFL value is constant (CFL ¼ UlbDtlb=Dxlb, Dtlb ¼ 1, Dxlb ¼ 1)

and the value of time step in physical units decreases together with the space step when the grid is refined.

Fig. 8 displays point-wise difference Lh;2hðtÞ between the solution obtained on the grid with step 2h and its
projection from the finer grid, measured in L1 norm: Lh;2hðtÞ ¼ kfhðtÞ � f2hðtÞk. Projection is set equal to an

arithmetical mean of the four fine cells lying inside one coarse cell. The solution is put equal to zero in non-

filled cells. The results are given for pressure (mbar), velocity (cm/s), and phase-distribution variable

qf=q : f ¼ fP ; kuk; qf=qg. The last figure in each row plots the error ratio Lh;2hðtÞ=L2h;4hðtÞ for these vari-

ables. The error is measured each 5% of filling. Mean ratio value is about 2 what corresponds to first-order

convergence. Table 4 displays integrated over the whole period of filling time convergence rates

Lh;2h ¼
P

t Lh;2hðtÞ vers L2h;4h ¼
P

t L2h;4hðtÞ.
The results for convergence rates reflect quite well main features of the current algorithm with respect to

mesh refinement. First, only first-order convergence is observed. In 2D case, since no tangential derivatives

are neglected, second-order accuracy is met by Chapman–Enskog expansion at interface as well as in bulk.

However, we can not expect effective second-order behavior from the boundary conditions at solid walls

used here. Also, the advection scheme and the calculations of the normal are only first-order accurate.

Second, the difference between the solutions obtained on three grids is smaller for intermediate Reynolds

numbers, Re ¼ 2 and Re ¼ 50. At Re ¼ 0:2, i.e., at high s values (s > 1), the difference between coarse/fine

solutions at the stagnation point is quite significant. We relate this to inaccuracy of the boundary conditions

which grows together with m (see [18,39]). For Re ¼ 500, if equal parameters of upwind scheme (Pecrit: ¼ 1,
C ¼ 1) are used on every grid, the numerical diffusion on coarse grids becomes excessive. This can be

understood from the relation (67): since Pecrit: and Ulb values are equal at all grids, mcrit: values are also close,

whereas the imposed viscosity values m increases with the refinement. This implies higher mnum values for

Fig. 7. Pressure solutions in 2D cavity at t ¼ 0:65 s with different space resolutions (left to right, space step is: h ¼ 0:2; h ¼ 0:1;

h ¼ 0:05 cm) and different Re numbers (top to bottom, Re ¼ 0:2, 2, 50, 500). Reference pressure of gas phase at interface is P0 ¼ 1013

mbar. Colors: Re ¼ 0:2, light gray near the inlet (3622–4096 mbar), dark gray (2673–2910 mbar), and gray (<1724 mbar); Re ¼ 2, light

gray near the inlet (1327–1356 mbar), dark gray (1213–1242 mbar), and gray (<1099 mbar); Re ¼ 50, dark gray (1036–1033 mbar),

and gray (<1025 mbar); Re ¼ 500, dark gray (1048–1043 mbar), and gray (<1033 mbar).
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smaller m values, i.e., for coarse grids. One could assume then that the parameter C should be reduced

together with m. The calculations on the bottom of the Fig. 7 are performed with increasing C values

(C ¼ 1=4; 1=2; 1), from coarser to finest grids. The results improve then according to our predictions (see at

the end of Section 6). We note, however, that some thickening appears when the boundary flux drains into
the inlet column (see the bump at the left of the inlet on right bottom picture in Fig. 7); this thickening

continues to travel with the fluid (see the left bottom pictures in Figs. 5 and 6). We conjecture that this is

related to coupling of the populations which carry fast and slow momentum values at interface cells. This

Fig. 8. Left to right, magnitude of error value for pressure, velocity magnitude, and fluid quantity qf=q between coarse-middle and

middle-fine grids in 2D cavity simulations. The last figure in each row plots the error ratio (coarse-middle to middle-fine) for these

variables. Top to bottom: Re ¼ 0:2, 2, 50, 500. Data correspond to previous picture.

Table 4

Error norm Lh;2h=L2h;4h in 2D cavity

Re Pressure (mbar) kuk (cm/s) qf=q

0.2 1295.9/553.4 49.44/41.7 0.705/0.51

2.0 330.7/180.4 28.45/16.5 0.39/0.22

50 496.9/282.5 89.6/48.6 0.57/0.33

500 654.68/311.5 144.1/69.09 0.98/0.36
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effect is less visible on coarse grids (see bottom pictures in Fig. 7) due to excessive numerical diffusion and/

or lack of space resolution. Similar results are obtained with the SPH approach by Kuhnert and Tiwari [44].

We suppose that adding surface tension would smooth the solution.

Compressibility study is performed for Re ¼ 2 when inlet velocities varies: Ulb ¼ 0:1� 2�n,

n ¼ 0; 1; 2; 3; 4. In two first cases, i.e., at high s values (s ¼ f7:5; 3:5g), the solution is neither accurate nor

stable. In the three other cases, we compute mean density value �qqðtÞ over all active points and compare it
with the reference value q0. We plot in Fig. 9(a) obtained results for dq value, dq ¼ ð�qq � q0Þ. In order to

check if dqðnÞ scales as Ulb2n , we rescale dq with respect to its value at n ¼ 4. Fig. 9(b) displays ds
q values,

ds
q ¼ ð�qq � q0Þ � 44�n. When n ¼ 4, Ulb ¼ 0:1=24, M2 � 1:2� 10�4, dq � 0, i.e., incompressible regime is

practically reached. After rescaling, density deviations ds
qðnÞ approaches to zero, similar to the results for

n ¼ 4. This confirms that the compressibility errors scales as M2, in agreement with the theoretical pre-

dictions.

7.3. Three-dimensional simulations

Benchmark simulations: Hammer box [36] , Campbell box [72], and Sheffield box [3] are presented. The

influence of inlet velocity on the compressibility is considered in ‘‘Motorblock’’ simulations. Density of

fluid qexp is 1 g=cm
3
unless specially indicated. Since very high Re numbers are modeled, free-slip boundary

conditions are mostly used. No-slip boundary conditions correspond to high local velocities in narrow

channels and lead to further increase of the compressibility. Filled volume is computed as a sum of vof-type

value mf ¼ qf=q. The deviation of the obtained filling state in time from the exact linear solution is con-

trolled. In benchmark simulations below, corresponding compressibility error lies within 5%.

Regular computational grids used here include from 105 to 2� 106 liquid cells. Similar results are ob-

tained by using both linearizations discussed in Section 3.3. The code is parallelized using Dynamical Load

Balance strategy [45]. Since the non-local operations (compared with one-phase LB method) are concen-

trated at interface cells only (e.g. calculation of normal vectors, advection of fluid mass, extrapolations), the
method keeps its advantages for parallelization.

Hammer box [36]. We show in Figs. 10 and 11, pressure and velocity fields during mold filling simu-

lations of steel hammer head casting at Re ¼ 53,417, Fr ¼ 5:1. LB simulations at Ulb ¼ 0:1 are done with

explicit upwind scheme (67), where Pecrit: ¼ 3 and C ¼ 1=3. The filling sequence agrees quite well with the

other results [36,52]. The stream reaches first the right wall at a the point which lies approximately at a

height equal to 2/3 of the distance between the runner and the bottom. The jet of failing steel attains the

velocity 250–260 cm/s, then it slows down at the bottom and raises slow into the casting box. During the

Fig. 9. Density deviations from the reference value at Re ¼ 2, Llb ¼ 40. Results are plotted for LB inlet velocities Ulb ¼ 0:1� 2�n,

where n ¼ 2; 3; 4. Accordingly, mlb ¼ 2� 2�n, s ¼ f2; 1:25; 0:875g. (a) dq ¼ ð�qq � q0Þ; (b) ds
q ¼ ð�qq � q0Þ � 44�n.
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rise, the pressure reaches the hydrostatic distribution. When the numerical diffusion increases and viscous/

gravitation effects prevail over the inertia, the stream comes into the runner and falls down (see [23]). In so

far, this test can be used as a measure of the effective Reynolds numbers. Also, because of very small LB

viscosity values used in this experiment, local Pe numbers take mostly high values. Indeed, Pecrit: ¼ 3

corresponds to kuk � 7� 10�5 in this experiment. One can assume that numerical diffusion can be switched

on at higher Pecrit: numbers. For instance, the results at Pecrit: ¼ 150, C ¼ 1=3 (i.e., scrit:kuk¼0:1 ¼ 0:501) are still
similar to those presented in Figs. 10 and 11. On the other hand, the stabilization is not strong enough when
Pecrit: ¼ 103, i.e., scrit:kuk¼0:1 ¼ 0:50015). This agrees with the stability values mentioned above. The work in

progress should help to estimate a priori effective s and/or Pe stable values in function of other physical

parameters.

Analysis of the algorithm is applied to current example. The number of interface points is of order of

several thousands at each time step (see Fig. 12(a)). Figs. 12(b)–(d) display the number of points where at

least one unfavorable situation mentioned at caption happens. The number of ‘‘bad’’ cases is negligible

compared with the total number of points where the reconstruction takes place. Extrapolations of popu-

lations from neighboring ‘‘good’’ cells are performed when situations (b), (c) or (d) happen. Figs. 12(e) and
(f) display the number of such points. If no such neighbor is found, the point is deactivated. The total

number of deactivated nodes over the whole period of filling is equal to six in this example. Due to the

stabilizing scheme, no negative population after collision appears. Otherwise the number of negative

Fig. 10. Filling sequence of pressure distribution in Hammer Box, close to symmetry plane, at Fr ¼ 5:1, Re ¼ 53; 417 (left to right and

top to bottom, 1.25%, 7.5%, 25%, 35%, 50%, 100% of exact filling). Physical parameters are: U ¼ 122:859 cm/s, mexp ¼ 6:9� 10�7 m2=s,

T ¼ 15 s, Lexp ¼ 3 cm. Grid: 110,573 liquid cells. LB: Ulb ¼ 0:1, m ¼ 1:1� 10�5, s ¼ 0:500034, Llb ¼ 6, T lb ¼ 36,858. Colors: light gray

(1339–1366 mbar), dark gray (1203–1230 mbar), and gray (<1122 mbar).
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populations after the reconstruction and after the collision increase drastically when s approaches its limit

value s ¼ 0:5.
Campbell box [72]. Numerical and experimental results in this geometry (see Figs. 13 and 14) have been

discussed at VII Modeling of Casting and Welding Processes Conference. We model the mold casting by

using constant inlet velocity which corresponds approximately to the prescribed filling time. Simulation

results at Re ¼ 3:2 are shown in Fig. 13. They agree well with the polymer flow predictions [72]. Filling

sequence at Re � 165 is plotted in Fig. 14. Here, the sprue develops fast along the bottom of the runner,
then impacts to the nearest side of the gate and expands first to the left. Then the sprue fountains quickly to

the right. Later, two vortices appear on the either side of the main filling stream. In this way, the simu-

lations reproduce the main features of the experimental results [72]. Note that the kinematic viscosity of the

aluminum (and hence Re number) is reduced here, since no turbulent modeling is used in the simulations.

Sheffield box [3]. The simulations at Re ¼ 24,717, Fr ¼ 10:7 in Sheffield box are displayed in Fig. 15 in

case when U ¼ 145 cm/s. They correspond to physical parameters of water. Flow comes from left to right

and the variation in inlet velocity results in different values of maximal height of the jet column in the right

gate. Our results at inlet velocities U ¼ 80, 95, 105, 145 cm/s agree well with the available experimental
data [3] and the numerical simulations [52]. For all inlet velocities, we use the same upwind parameters:

Pecrit ¼ 3, C ¼ 1=3. When C increases to 1, however, right water jet does not reach the top wall at U ¼ 145

cm/s, indicating that the gravitation and viscous forces dominate over the convective ones (see [23]).

Similar to the jet behavior in the Hammer box, this test is a good indicator of the excessive numerical

diffusion.

Fig. 11. Filling sequence of the velocity magnitude distribution in Hammer Box. Parameters are the same in Fig. 10. Colors: light gray

where the stream reaches the right wall (257–279 cm/s), dark gray (150–171 cm/s), and gray (<86 cm/s).
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Filling sequence in ‘‘Motorblock’’ at Re ¼ 26,507, Fr ¼ 2:36 is shown in Fig. 16. The results are
obtained with strong upwind parameters Pecrit: ¼ 1 and C ¼ 1. The compressibile effect is much stronger

here than for the Hammer and Sheffield boxes when the same inlet velocity (Ulb ¼ 0:1) is used. It

causes, in particular, a quite noticeable delay in filling time. The filling state (in percent of full stand) is

plotted as a function of time in Fig. 17(a) for Ulb ¼ 0:1 and Ulb ¼ 0:025. Fig. 17(b) displays the error

in filling state divided by factor four for Ulb ¼ 0:1. Since both solution are close we can conclude that

the error in filling time scales with M rather than with M2. Note that even for Ulb ¼ 0:025, the pressure

in narrow channels (see inlet channels at two last pictures in Fig. 16, for instance) is still too high. The

compressibility of the method is controlled by the choice of the LB characteristic velocity at the inlet:
while reducing Ulb, pressure solution improves and correct filling time approaches. Nevertheless, an

efficient strategy to maintain reasonable Mach numbers in realistic calculations needs still to be

found.

Fig. 12. Analysis of the algorithm for Hammer Box: (a) total number of interface points; (b) number of equations m is less than

number of variables nv; (c) mP nv but the linear system is singular; (d) number of cells where negative populations appear after the

reconstruction; (e) number of interface cells where interpolations need; (f) number of new interface cells where interpolations need.

Here, only interpolations because of (b)–(d) are accounted.
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8. Conclusion

A general approach for free interface Lattice Boltzmann method has been described. This approach is
based on a first-order Chapman–Enskog expansion of the population at interface nodes. Boundary con-

ditions at curvilinear interfaces are exactly met by the coefficients of the series. Interface advection is

performed with help of locally mass conserving and anti-diffusive recoloring algorithm. Since no stage of

the algorithm involves geometrical interface constructions, the method is robust to any interface topology

and can be regarded as a surface capturing method. In bulk, second-order LB accuracy in space is

maintained. At the interface, formal second-order accuracy is kept by the expansion. At solid boundaries,

Fig. 13. Velocity magnitude in Campbell Box at Fr ¼ 5:56, Re ¼ 3:2 (left to right and top to bottom, t ¼ 0:14, 0.24, 0.28, 0.33, 0.38,

0.47 s) Physical parameters are: U ¼ 88:6 cm/s, mexp ¼ 4� 10�3 m2=s, T ¼ 1:88 s, Lexp ¼ 1:44 cm. Grid: 216,546 liquid cells. LB:

Ulb ¼ 0:0125, mlb ¼ 0:047, s ¼ 0:641, Llb ¼ 12, T lb ¼ 111,049. Free-slip boundary conditions. Colors: light gray close to the narrowest

sections (214–232 cm/s), dark gray (125–143 cm/s), and gray (<71 cm/s).
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actual accuracy of local reflections is something between first and second order. Boundary method [20] can

be incorporated for further improvement. Least square minimization procedure [62,63] could bring second

order improvement of the normal calculations on regular grid. From the point of view of the numerical

efficiency and adaptation to parallel calculations, the method is not essentially different from the ILB

methods. In so far, locality of its main operations and linear increase of the computational efforts with

space refining are advantageous for realistic calculations. Since no complicated discretization/advection/

solution procedure is needed, the method can be easily implemented by the LB users and novices. First-

order Chapman–Enskog expansion of the populations, which contains in itself all components of the strain

Fig. 14. Velocity magnitude in Campbell Box at Fr ¼ 5:965, Re ¼ 165 (left to right and top to bottom, t ¼ 0:09, 0.18, 0.227, 0.32, 0.35,

0.45 s). Physical parameters are: U ¼ 91:75 cm/s, mexp ¼ 8� 10�5 m2=s, T ¼ 1:815 s, Lexp ¼ 1:44 cm. Grid: 216,546 liquid cells. LB:

Ulb ¼ 0:05, mlb ¼ 0:047, s ¼ 0:641, Llb ¼ 12, T lb ¼ 27,762. Free-slip boundary conditions. Colors: light gray close to the narrowest

sections at bottom pictures (314–371 cm/s), dark gray (200–229 cm/s), and gray (<114 cm/s).
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tensor, allows local and simple incorporation of viscoelastic effects into the model. In particular, we
combine the LB filling algorithm with the regularized Bingham model [2]. First results [24] are found in

good agreement with the theoretical and the numerical predictions.

Besides other straightforward extensions of the method, for instance to other LB velocity models or to

two (or more) fluids, several problems remain. The first one is related to intrinsic compressibility of the

method. Robust applications of the method in complex geometries require to develop adaptive strategy

for dynamic change of the LB parameters and introduce variable space resolution into the model. The

second difficulty is observed in filling simulations at very small Reynolds numbers, e.g. processing of

metal alloys. We conjecture that the reason lies in inaccuracy of first-order Chapman–Enskog approxi-
mation and/or boundary conditions in the limit of high LB viscosities (s > 1). Although the problem can

be avoided by restriction of the LB viscosities to their reliable interval, the corresponding reduction in LB

velocities slows the method. Finally, effective and accurate design of LB upwind schemes needs further

investigation. Despite these difficulties, the method seems very promising for real-life simulations in in-

jected molding provided that the conditions on its accuracy are met by a proper choice of the numerical

parameters.

Two-phase methods are required in situations where free interface hypotheses are not valid and/or the

description of the light phase is desirable (e.g. entrainment of air). We believe that the main ideas of the free
interface method can be used to analyze and, maybe, to design two-phase LB methods. In particular,

existing two-phase LB models implicitly impose interface boundary conditions. Their analysis can be

performed based on the coefficients of the series solutions of the obtained distribution functions coming

from both sides of the interface. Computing of these coefficients in the interface coordinate system can be

done in analogy to reconstruction step in the free interface algorithm.

Fig. 15. Velocity magnitude in Sheffield box at Fr ¼ 10:7, Re ¼ 24; 717 (left to right and top to bottom, t ¼ 0:06, 0.17, 0.23, 0.4 s).

Physical parameters are: U ¼ 145 cm/s, mexp ¼ 1:17� 10�6 m2=s, T ¼ 2:31 s, Lexp ¼ 2 cm. Grid: 1,270,420 liquid cells. LB: Ulb ¼ 0:1,

mlb ¼ 8:1� 10�5, s ¼ 0:500243, Llb ¼ 20, T lb ¼ 33; 432. Free-slip boundary conditions. Colors: dark gray (250–286 cm/s), and gray

(<143 cm/s).
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Appendix A. Generalized lattice Boltzmann equation

In the first two sections, we present basis vectors and eigenvalues for D2Q9 and D3Q15 models. This is

followed by common remarks and particular solutions for free eigenvalues in Section A.3. Details to im-

plementation of collision step are discussed in Section A.4. First-order term �N ð1Þ
i is obtained in Section A.5

using notations of current paper.

A.1. Model D2Q9

Let nine velocities of the D2Q9 model be ordered as following: ð0; 0Þ, ð1; 0Þ, ð0; 1Þ, ð�1; 0Þ, ð0;�1Þ, ð1; 1Þ,
ð�1; 1Þ, ð�1;�1Þ, ð1;�1Þ. Orthonormal basis vectors for D2Q9 can be chosen in the form (cf. relation (12))

e1 ¼
1

3
fC0

i g; e2 ¼
1ffiffiffi
6

p fCixg; e3 ¼
1ffiffiffi
6

p fCiyg;

e4 ¼ 6 tHp CixCiy

n o
; e5 ¼ 3 tHp ðC2

ix

�
� 1

2
c2i Þ

�
;

e6 ¼
ffiffiffi
3

p
tHp ðC3

ix

n
� 3CixC2

iyÞ
o
; e7 ¼

ffiffiffi
3

p
tHp ðC3

iy

n
� 3CiyC2

ixÞ
o
;

e8 ¼
Eim

kEimk
; Eim ¼ tHp

c2i
D

�
� rHp

�
; kEimk ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð41� 138c2s þ 117c4s Þ

q
;

e9 ¼
Tp

kTpk
; T0 ¼ 4ð1� 3c2s Þ; T1 ¼ 13� 21c2s ; T2 ¼ 24c2s � 14;

ðA:1Þ

kTpk ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð41� 138c2s þ 117c4s Þ

q
; ðA:2Þ

where vector Tp has constant value Tp for each p-class. Basis vectors (A.2) are similar to those in
[25,26,38,50], except the two last vectors. Let us refer here to two alternative, c2s -independent, basis vectors
as E and H:

Ei ¼ f3C2
i � 4g; Hi ¼ f9C2

ixC
2
iy � 6C2

i þ 4g;

Ei ¼ � 2

kEimk
ð�2þ 3c2s Þe8 þ

36

kTpk
ð�5þ 9c2s Þe9;

Hi ¼
1

kEimk
ð�5þ 9c2s Þe8 þ

72

kTpk
ð�2þ 3c2s Þe9:

ðA:3Þ

The eigenvalues associated with basis vectors (A.2) are

f0; 0; 0; kab
w ; kaa

w ; k2; k2; ke; klg: ðA:4Þ
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When ke ¼ kl, the system of basis vectors (A.2) is equivalent to those which use the vectors (A.2) with the

corresponding equal eigenvalues. When kab
w ¼ kaa

w , the projection of first-order population expansion (10),

(12) in standard coordinate system on the basis (A.2) yields the coefficients of the decomposition as (see first

terms for ðN eq:
i ; ekÞ and last term for ðN ð1Þ

i ; ekÞ, respectively):

ðN; e1Þ ¼
1

3
q; ðN; e2Þ ¼

Jxffiffiffi
6

p ; ðN; e3Þ ¼
Jyffiffiffi
6

p ;

ðN; e4Þ ¼
jxjy
2q

þ 1

6

1

kw

ojx
oy

�
þ ojy

ox

�
;

ðN; e5Þ ¼
1

2q
j2x

�
� j2y

�
þ 1

3kw

ojx
ox

�
� ojy

oy

�
;

ðN; e6Þ ¼
ffiffiffi
3

p
Jx

6
; ðN; e7Þ ¼

ffiffiffi
3

p
Jy

6
; ðA:5Þ

ðN; e8Þ ¼ a8q þ b8

ðj2x þ j2yÞ
q

þ 1

kEimk
1

ke

ojx
ox

�
þ ojy

oy

�
;

a8 ¼ � 1

12kEimk
ð39c4s � 43c2s þ 12Þ; b8 ¼ � 1

12kEimk
ð15c2s � 9Þ;

ðN; e9Þ ¼ a9q þ b9

ðj2x þ j2yÞ
q

;

a9 ¼
1

kTpk
ð4� 6c2s Þ; b9 ¼

3

kTpk
ð3c2s � 1Þ: ðA:6Þ

When c2s ¼ 1=3, the data are: kEimk ¼
ffiffiffi
2

p
=3, kTpk ¼ 12

ffiffiffi
2

p
, Ei ¼ 3

ffiffiffi
2

p
ðe8 � e9Þ, Hi ¼ �3

ffiffiffi
2

p
ðe8 þ e9Þ,

a8 ¼ �
ffiffiffi
2

p
=4, b8 ¼

ffiffiffi
2

p
=2, a9 ¼

ffiffiffi
2

p
=12, b9 ¼ 0.

A.2. D3Q15 model

Let 15 velocities of the D3Q15 model be ordered as following: ð0; 0; 0Þ, ð1; 0; 0Þ, ð0; 1; 0Þ, ð�1; 0; 0Þ, ð0;�1;
0Þ, ð0; 0; 1Þ, ð0; 0;�1Þ, ð1; 1; 1Þ, ð�1; 1; 1Þ, ð�1;�1; 1Þ, ð1;�1; 1Þ, ð1; 1;�1Þ, ð�1; 1;�1Þ, ð�1;�1;�1Þ, ð1;�1;
�1Þ. Orthonormal vectors are chosen in the form (cf. relation (12)), written in standard coordinate system

e1 ¼
1ffiffiffiffiffi
15

p fC0
i g; e2 ¼

1ffiffiffiffiffi
10

p fCixg; e3 ¼
1ffiffiffiffiffi
10

p fCiyg; e4 ¼
1ffiffiffiffiffi
10

p fCizg;

e5 ¼ 6
ffiffiffi
2

p
ftHp CixCiyg; e6 ¼ 6

ffiffiffi
2

p
ftHp CiyCizg; e7 ¼ 6

ffiffiffi
2

p
ftHp CixCizg;

e8 ¼
9

2
ffiffiffi
3

p tHp C2
ix

��
� 1

D
c2i

��
; e9 ¼

3

2
ftHp ðC2

iy � C2
izÞg;

e10 ¼
1ffiffiffi
8

p ftHp CixCiyCizg; e11 ¼
3ffiffiffiffiffi
10

p ftHp ð2C3
ix � 3CixðC2

iy þ C2
izÞÞg;

e12 ¼
3ffiffiffiffiffi
10

p ftHp ð2C3
iy � 3CiyðC2

ix þ C2
izÞÞg; ðA:7Þ

e13 ¼
3ffiffiffiffiffi
10

p ftHp ð2C3
iz � 3CizðC2

ix þ C2
iyÞÞg;

e14 ¼
Eim

kEimk
; Eim ¼ tHp

c2i
D

�
� rHp

�
; kEimk ¼ 1

36

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1410� 6660c2s þ 7938c4s Þ

q
;

e15 ¼
Tp

kTpk
; T0 ¼ 2ð5� 21c2s Þ; T1 ¼ 25� 57c2s ; T2 ¼ �20þ 48c2s ;

kTpk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30ð235� 1110c2s þ 1323c4s Þ

q
: ðA:8Þ
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Here again, the constant multiple before the lattice vector corresponds to inverse of the norm of this vector.

Basis vectors (A.6) are similar to those in [41], except the two last vectors. Let us refer here to two alter-

native, c2s -independent, basis vectors as E and H:

Ei ¼ fC2
i � 2g; Hi ¼

1

2
f15C4

i � 55C2
i þ 32g;

Ei ¼
1

3kEimk
ð�5þ 9c2s Þe14 �

30

kTpk
ð�11þ 27c2s Þe15;

Hi ¼
5

3kEimk
ð�11þ 27c2s Þe14 þ

120

kTpk
ð�5þ 9c2s Þe15:

ðA:9Þ

Basis vectors (A.6) are associated with the following eigenvalues:

f0; 0; 0; 0; kab
w ; kab

w ; kab
w ; kaa

w ; kaa
w ; kxyz; k2; k2; k2; ke; klg: ðA:10Þ

Same remarks as for (A.2) are valid here. In case kab
w ¼ kaa

w , the coefficients of the decomposition on the

basis (A.6) are related with the macroscopic quantities as

ðN; e1Þ ¼
q

3
ffiffiffi
5

p ; ðN; e2Þ ¼
Jxffiffiffiffiffi
10

p ; ðN; e3Þ ¼
Jyffiffiffiffiffi
10

p ; ðN; e4Þ ¼
Jzffiffiffiffiffi
10

p ;

ðN; e5Þ ¼
jxjy
2

ffiffiffi
2

p
q
þ 1

6
ffiffiffi
2

p 1

kw

ojx
oy

�
þ ojy

ox

�
;

ðN; e6Þ ¼
jyjz
2

ffiffiffi
2

p
q
þ 1

6
ffiffiffi
2

p 1

kw

ojy
oz

�
þ ojz

oy

�
;

ðN; e7Þ ¼
jxjz
2

ffiffiffi
2

p
q
þ 1

6
ffiffiffi
2

p 1

kw

ojx
oz

�
þ ojz

ox

�
;

ðN; e8Þ ¼
ð2j2x � ðj2y þ j2z Þ

2
ffiffiffi
3

p
q

þ
ffiffiffi
3

p

9kw
2
ojx
ox

�
� ojy

oy

�
þ ojz

oz

��
; ðA:11Þ

ðN; e9Þ ¼
ðj2y � j2z Þ

2q
þ 1

3

1

kw

ojy
oy

�
� ojz

oz

�
;

ðN; e10Þ ¼ 0; ðN; e11Þ ¼
7Jx

6
ffiffiffiffiffi
10

p ; ðN; e12Þ ¼
7Jy

6
ffiffiffiffiffi
10

p ; ðN; e13Þ ¼
7Jz

6
ffiffiffiffiffi
10

p ;

ðN; e14Þ ¼ a14q þ b14

ðj2x þ j2y þ j2z Þ
q

þ 1

kEimk
1

ke

ojx
ox

�
þ ojy

oy
þ ojz

oz

�
;

a14 ¼ � 1

72kEimk
ð441c4s þ 72� 353c2s Þ; b14 ¼ � 1

72kEimk
ð57c2s � 25Þ;

ðN; e15Þ ¼ a15q þ b15

ðj2x þ j2y þ j2z Þ
q

;

a15 ¼
2

kTpk
ð5� 11c2s Þ; b15 ¼

10

kTpk
ð3c2s � 1Þ: ðA:12Þ

Similar as above, vector N�Neq: has no projection on first four vectors, corresponding to mass and

momentum and the corresponding terms can be omitted in summation in Eq. (5). When c2s ¼ 1=3, the data
are: kEimk ¼

ffiffiffi
2

p
=6, kTpk ¼ 6

ffiffiffiffiffi
10

p
, Ei ¼ �2

ffiffiffi
2

p
e14 þ

ffiffiffiffiffi
10

p
e15, Hi ¼ �10

ffiffiffi
2

p
e14 � 4

ffiffiffiffiffi
10

p
e15, a14 ¼ �5

ffiffiffi
2

p
=36,

b14 ¼
ffiffiffi
2

p
=4, a15 ¼ 2

ffiffiffiffiffi
10

p
=45, b15 ¼ 0.
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A.3. Remarks on choice of the free eigenvalues

The basis vectors above are mainly chosen among the polynomial vectors coming into Chapman–En-

skog expansion. In case of more general model considered in [25,26,38], the eigenvalues kab
w and kaa

w can

differ under condition that the equilibrium function is modified in order to recover the correct stress-tensor

term in the derived Navier–Stokes equations. Similar generalization [21] is done for D3Q15 model. In this

paper, we assume kab
w and kaa

w to be equal and denote them as kw. Eigenvalues ke and kw enter as the co-

efficients into first-order expansion (cf. (12)) and, therefore, determine the transport coefficients (15a) and

(15b). Other eigenvalues are free.

Magic solution for free eigenvalues relates the eigenvalues associated with the odd order polynomial
eigenvectors ðkO ¼ fk2; kxyzgÞ to those associated with the even order polynomials (kE ¼ fkw; ke; klg)
through ‘‘magic’’ condition

kOðkEÞ ¼ �8
kE þ 2

kE þ 8
: ðA:13Þ

Its properties are discussed in Section 4.1. When the nonlinear term is present at equilibrium (10), the

solution (A.13) is not more exact for Poiseuille flow until ‘‘free’’ projection aH is introduced into the

equilibrium function

Neq: ! Neq: þ aH: ðA:14Þ

Here, a is some constant and H is given by relation (A.3) for the D2Q9 model and by relation (A.9) for the

D3Q15 model. Important here that equilibrium projection on H does not influence the derived Navier–

Stokes equations. The coefficient a can be used to annihilate the contribution of a non-linear term in �N ð1Þ
i .

In particular, when

a ¼ 1

12
ðj2x þ j2yÞ for D2Q9; ðA:15aÞ

a ¼ � 1

24
ðj2x þ j2y þ j2z Þ for D3Q15; ðA:15bÞ

such a term vanishes when j has only one non-zero component, e.g. Poiseuille flow. In terms of equilibrium
weights, solution (A.15a) means that the projection of equilibrium in a form (10) is doubled in 2D:

ðNeq: þ aH;HÞ ¼ 2ðNeq:;HÞ. This coincides with the solution obtained with another approach by

D.d�Humi�eeres [40]. In 3D, we have ðNeq: þ aH;HÞ ¼ 4ðNeq:;HÞ. Numerical computations confirm that

when aH is added to equilibrium, momentum definition (3b) is used, and magic solution (A.13) is employed

for free eigenvalues, Poiseuille profile in a channel of given width is obtained exactly, likely as in case of

linear equilibrium function.

First-order solution for free eigenvalues puts all eigenvalues except kw equal to )1

k2 ¼ ke ¼ kxyz ¼ kl ¼ �1: ðA:16Þ

In this case, only the projection on second-order polynomial basis vectors associated with kw does not

vanish after collision. This becomes especially transparent when the collision is written in the equivalent
form:

eNiNiðr; tÞ ¼ N eq:
i ðr; tÞ þ

Xbm
k¼0

ð1þ kkÞðN�Neq:; ekÞeki: ðA:17Þ
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While using Chapman–Enskog expansion at reconstruction step, we neglect Oð�2Þ and OðM2Þ terms as-

sociated with the eigenvalues ke and free eigenvalues. Assuming that first-order collision could dump the

oscillations in these terms, we often use it for calculations in this paper.

A.4. Implementation of collision

Equation (5) is formulated in terms of the normalized basis vectors in order to simplify the notations. It

is much more numerically efficient to represent basis vectors as the vectors with integer components, say

eintk . This enables us to compute easily all equal linear combinations which come into projection and into the

decomposition: /k ¼ 1=keintk k2 � ðN; eintk Þ and
P

k /ke
int
k , accordingly. Moreover, computing the generalized

collision (5) does not require the evaluation of equilibrium function in a form (10). Following idea [40], one

can represent it in a form of equilibrium projection. The collision reads then

~NNðr; tÞ ¼ Nðr; tÞ þ
Xbm
k¼0

kkf/k � /eq:
k geintk ;/eq:

k ¼ ðNeq:; eintk Þ: ðA:18Þ

Since /eq:
k can be computed analytically (see (A.4) and (A.10)), the computational efforts reduce drastically

(at least at factor two) and become quite comparable with the BGK collision where the equilibrium (10)

should be computed. Nevertheless, when the equilibrium is computed for some other purpose as well, first-

order collision is relatively fast. A particular fastest choice kk � �1 is employed in [81]. In case of con-

vergence to stationary state, however, a proper choice of the eigenvalues reduces drastically the number of

time steps without loss of the accuracy.

A.5. First-order expansion

We precise here how we obtain first-order correction to equilibrium �N ð1Þ
i in the form (12) in the standard

coordinate system. Following [14], Chapman–Enskog expansion (9) ot ¼ �ot1 þ �2ot2 ; ox ¼ �o�xx leads to �1-
accurate macroscopic relations:

ot1q þr0 � ja ¼ 0; ðA:19aÞ

ot1ja þ o�bbPab ¼ 0; Pab ¼ c2sqdab þ quaub: ðA:19bÞ

Correction N ð1Þ
i satisfies first-order Taylor development of Eq. (5):

ot1N
eq:
i þ Ciao�aaN

eq:
i ¼

Xbm
j¼0

AijN
ð1Þ
j ; i 2 f0; . . . ; bmg: ðA:20Þ

Substitution of the relation (10) into (A.20) yields with help of the relations (A.19a), (A.19b) and when

Oðu2Þ and Oð�2Þ terms are neglected:

ot1N
eq:
i þ Ciao�aaN

eq:
i ¼ CiatHp ½ot1ja þ c2so�aaq

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{¼0

� þ rHp ot1q þ oja
ob0 t

H

p CiaCib

¼ r0 � j tHp
c2i
D

�
� rHp

�
þ oja
ob0 t

H

p CiaCib

�
� c2i
D

dab

�
: ðA:21Þ

By using the definitions in (12), relation (A.20) becomes

�
Xbm
j¼0

AijN
ð1Þ
j ¼ oja

ob
Qiab þr � jEim

i : ðA:22Þ
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Replacing fa; bg by fa0; b0g, the derivation in any other coordinate system follows exactly the same lines.

Relation (A.22) takes then more general form

�
Xbm
j¼0

AijN
ð1Þ
j ¼ oja

ob0 Qia0b0 þ r � jEim
i : ðA:23Þ

Since the vectors fQia0b0 g are fully decomposed on the second-order polynomial basis vectors associated
with the eigenvalue kw and vector Eim is chosen to be a basis vector associated with the eigenvalue ke,
relation (A.23) takes a form (12).
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